Studying macromolecular complex stoichiometries by peptide‐based mass spectrometry
نویسندگان
چکیده
A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide-based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide-based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.
منابع مشابه
Native Top‐Down Mass Spectrometry of TAR RNA in Complexes with a Wild‐Type tat Peptide for Binding Site Mapping
Ribonucleic acids (RNA) frequently associate with proteins in many biological processes to form more or less stable complex structures. The characterization of RNA-protein complex structures and binding interfaces by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, or strategies based on chemical crosslinking, however, can be quite challenging. Herein, we have explored the ...
متن کاملMerging molecular electron microscopy and mass spectrometry by carbon film-assisted endoproteinase digestion.
Many fundamental processes in the cell are performed by complex macromolecular assemblies that comprise a large number of proteins. Numerous macromolecular assemblies are structurally rather fragile and may suffer during purification, resulting in the partial dissociation of the complexes. These limitations can be overcome by chemical fixation of the assemblies, and recently introduced protocol...
متن کاملHybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: An electrospray mass spectrometry study.
We investigated the interaction of the short peptide nucleic acid (PNA) strand [acccca]-PNA with oligodeoxynucleotides containing one, two, or four tracts of TGGGGT units. Electrospray ionization mass spectrometry allowed exploring the wide variety of complex stoichiometries that were found to coexist in solution. In water, the PNA strand forms short heteroduplexes with the complementary DNA se...
متن کاملQuantifying homologous proteins and proteoforms
Many proteoforms - arising from alternative splicing, post-translational modifications (PTMs), or paralogous genes - have distinct biological functions, such as histone PTM proteoforms. However, their quantification by existing bottom-up mass-spectrometry (MS) methods is undermined by peptide-specific biases. To avoid these biases, we developed and implemented a first-principles model (HIquant)...
متن کاملTopological Models of Heteromeric Protein Assemblies from Mass Spectrometry: Application to the Yeast eIF3:eIF5 Complex
Describing, understanding, and modulating the function of the cell require elucidation of the structures of macromolecular assemblies. Here, we describe an integrative method for modeling heteromeric complexes using as a starting point disassembly pathways determined by native mass spectrometry (MS). In this method, the pathway data and other available information are encoded as a scoring funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015